Isolation of Curcuminoids by Flash Chromatography and Quantification by UPLC-MS/MS Q-TOF

Ahmad N1, Ahmad FJ1, Ahmad S2, Iqbal Z1, Shamim M1, Khar RK1

1Faculty of Pharmacy, Department of Pharmaceutics, Jamia Hamdard, New Delhi, 110062, India. 2Faculty of Pharmacy, Department of Pharmacognosy, Jamia Hamdard, New Delhi, 110062, India. 3Faculty of Science, Department of Chemistry, Jamia Hamdard, New Delhi, 110062, India.

Curcuminoids {Curcumin (R1, R2=OCH3), demethoxycurcumin (R1=H, R2=OCH3) and bis-demethoxycurcumin (R1, R2=H)} are polyphenols obtained from the popular Indian spice turmeric, which is a member of the ginger family (Zingiberaceae) [1]. These are responsible for the yellow color of turmeric and used traditionally in inflammation, fever, rheumatic pain. Recently used in anticancer [2], Cerebral Ischemia [3, 4] and antioxidant [5]. The objective of this work was to separate and isolate curcuminoids using Flash Chromatography, and to determine the physiochemical characteristics of isolated curcuminoids. Flash chromatographic separation of curcuminoids pigments was performed on silica column (4-gram flash column) using chloroform: methanol, 98:02, v/v. The purity and quantification of each curcuminoid pigment was confirmed by ultra performance liquid chromatography synapt mass spectrometry (UPLC-MS/MS Q-TOF). The isolated pigments were characterized with respect to melting point, UV, FTIR, Nuclear Magnetic Resonance and Mass Spectrometry. Curcumin, demethoxycurcumin and bisdemethoxycurcumin were separated and isolated by easy, simple and cheap flash chromatography. The data generated by UPLC-MS/MS can be used for the identification and quantification of individual curcuminoid pigments and method proposed for isolation can be used for simple and easy method for obtained pure curcuminoids in large scale.


Acknowledgements: Authors are Thankful to DST-FIST for financial support to, Faculty of Pharmacy, Department of Pharmacognosy, Bioactive Natural Products Laboratory, Jamia Hamdard, New Delhi, 110062, India.