Estimation of measurement uncertainty in food microbiology: a normative approach

3rd AOAC Europe – Eurachem Symposium, 3-4 March 2005, Brussels
Bertrand LOMBARD
AFSSA-LERQAP, Maisons-Alfort, France
E-mail: b.lombard@afssa.fr
Outline

• The normative approach for food microbiology
• Measurement uncertainty in quantitative microbiology
• Measurement uncertainty in qualitative microbiology
• Interpretation against legal limits
Introduction
Why?

- **Accreditation** of laboratories
 - Requirements of EN ISO 17025, § 5.4.6
 - To estimate the measurement uncertainty (MU) associated to the results produced by the laboratory
 - If rigorous/statistically valid calculation of MU not possible, to identify the MU components and to make a reasonable estimation of them
 - Implementation in France (COFRAC) for food microbiology
 = delayed (see ISO works)
Why ? (foll.)

• **Significance** of microbiological analysis = direct hazard for the consumer health

• **Quantitative** methods in microbiology = highly variable
 \(\rightarrow\) Need to quantify this variability

• How to express MU for **qualitative** determinations?
The normative approach for food microbiology
The ISO structure

• ISO/TC 34/SC 9
 – TC 34 « Food products »
 – SC 9 « Microbiology »
• Microbiological analysis of foods & feeds
• « Horizontal » approach
Bangkok, December 2002

- MU in **quantitative** microbiology
 = Basic approach adopted
 → Technical Specification (ISO/TS)
 - Quicker publication
 - Users’ review & 2-year revision
 - MU for **qualitative** determinations
 = In a 2nd step
Measurement uncertainty in quantitative microbiology
The approach (1)

• Quantitative determinations
 – Colony-Count Techniques (+ Most Probable Number Techniques)
 – Alternatives methods (instrumental)

• Decision based on a 1st series of ISO trials (2002)

• Broad consensus at ISO meeting
The approach (2)

• GUM decomposition approach not selected
 – MU underestimation?
 – Heavy in food microbiology
The approach (3)

- « Global » approach chosen
 - Reproducibility standard-deviation (s_R) on the final result of the entire measurement process
 - In agreement with
 - Codex Alimentarius (CCMAS)
 - ISO/TS 21 748 : 2004
 - « Guide for use of the estimations of repeatability, reproducibility and trueness in the estimation of measurement uncertainty »
 - Established by ISO/TC 69/SC 6
 - Bridge between GUM & ISO 5725
 - Global approach = special case of type A experimental estimation
The main steps

• 2003: 1st draft of ISO/TS 19036
 «Microbiology of foods and animal feeding stuffs – Guide for the expression of measurement uncertainty of quantitative determinations»

• 2003/2004: 2nd series of ISO trials
 – To quantify MU component linked to
 • Sampling of the test portion
 • Preparation of the initial suspension
 – 78 participants, from 10 countries

• 2004: Decisions for final draft of ISO/TS 19036
 – ISO Project Group
 – ISO/TC 34/SC 9
Guide ISO/TS 19036 - Presentation (1)

• Final Draft
 ↗ Under 3-month vote (→ 11 May) before publication

• Principles
 1. Global approach
 2. Enlarged MU = 2 \(s_R \)
Guide ISO/TS 19036 - Presentation (2)

• Principles (foll.)
 3. \(s_R \) estimated per
 • (consistent group of) microorganism(s)
 • (consistent group of) matrix(ces)

4. 3 options for \(s_R \)
 • Intra-laboratory \(s_R \)
 • Inter-laboratory \(s_R \) (method validation)
 • Inter-laboratory \(s_R \) (proficiency testing)
The « black-box » diagram

- **Excluded** (out of the analytical process)
- **Low levels excluded**
- **Excluded in general** (empirical nature of microbial counts)

Sampling

- **Random errors** (repeatability)
- **Bias**

Sample ➔ **Black box** ➔ **Test result**

- **Matrix (test portion)**
- **Initial suspension**
- **Operator/ time**
Intra-laboratory $s_R(1)$

- 1st (preferred) option
 - linked to the laboratory *per se*
Intra-laboratory $s_R(2)$

Experimental protocol

Food sample

1st operator (conditions A)

Initial suspension

Analyse

2nd operator (conditions B)

Initial suspension

Analyse

Different conditions
Intra-laboratory $s_R (3)$

- The experimental protocol
 - 10 samples per matrix type
 - Advantage = MU « at large »
 - Heterogeneity of the sample contamination
 - Preparation of the initial suspension
- Drawbacks
 - Need to repeat the protocol for each type of matrix analysed by the laboratory
 - Need to test naturally contaminated samples
Inter-laboratory s_R (method validation) (1)

- **Advantages** = available values
- **Drawbacks**

 1. **Conditions to meet** (see ISO/TS 21 748)
 - Laboratory’s bias & precision
 = compatible with the method’s ones
 - All uncertainty sources (incl. test portion, sample preparation)
 = taken into account in the inter-laboratory trial
Inter-laboratory s_R (method validation) (2)

• Drawbacks (foll.)
 2. Inter-laboratory s_R available for a limited number of methods in food microbiology
 3. Difficulty
 ➢ to apply to routine analyses
 ➢ precision data obtained in limited and artificial conditions
 – Combinaisons (matrix, strain)
 – Annex flora (if any)
 4. Risk to under-estimate MU
 (samples homogenized and stabilized)
Inter-laboratory s_R (PT)

- **Advantages**
 - Available values
 - Large number of PT schemes in food microbiology

- **Drawbacks**

 1. **Conditions to meet**
 - Method used by the laboratory in PT
 = the same than in routine
 - Method used by a sufficient number of participants
 - PT samples \approx routine samples

 2. **Samples**
Measurement uncertainty in qualitative microbiology
• Preliminary works at ISO
• 2 possibilities foreseen
 – CI around the Limit of Detection (LoD$_{50}$)
 – From the equivalent of reproducibility for qualitative determinations
Interpretation against legal limits
Legislative frame

• Food hygiene « package »
 ↳ Regulation 852/2004 (« H I »)
• Draft Regulation on microbiological criteria
• A microbiological criterion
 = a qualitative/quantitative limit +...
Food hygiene controls

• For operators’ own checks
 = MU not taken into account

• For official food controls
 = ?

 ➢ the same rule
 ➢ or (Figure 2)
 o case (ii) for indicators
 o case (iv) for pathogens

 ➔ To be precised into EC Guidelines, to come
Figure 2: Uncertainty and compliance limits
Conclusion
• Global approach
 – Pragmatic, adapted to the complexity of
 • Food analysis
 • Microbiological analysis
 – In agreement with
 • GUM principles
 • International references and rules
• MU estimation becoming widespread in food microbiology
 = Towards a more « scientific » analysis ?